An algorithm for centerline extraction using natural neighbour interpolation
نویسنده
چکیده
Data caption and conversion are two of the most costly operations of any GIS, in terms of computer time and manual work needed for spatial data acquisition. They can represent up to 80 percent of the total implementation costs. Manual digitising is a very error prone and costly operation, especially due to the lack of explicit topology in commercial GIS systems. Indeed, each map update might require the batch processing of the whole map. Currently, commercial GIS do not offer completely automatic raster/vector conversion even for simple scanned black and white maps. Various commercial raster/vector conversion products exist for the skeletonisation or thinning of the pixels forming the line, but these approaches have shown difficulties with the extraction of good topology. The spatial feature extraction in raster/vector conversion systems is based on line tracing algorithms. In order to operate they need user defined tolerances settings, what causes difficulties in the extraction of complex spatial features, for example: road junctions, curved or irregular lines and complex intersections of linear features. The approach we use here is based on image processing filtering techniques to extract the basic spatial features from raster data. These spatial features can be used for the reconstruction of the image within the topological data structure the Voronoi diagram. The novel part of this research is the definition of deterministic topological rules and algorithms for extracting the spatial features from the Voronoi data structure. These spatial features can then be represented in different spatial data structures that can be implemented in a GIS. In this research we use the topological approach to develop new algorithms and data structures for integrated raster/vector models leading to the improvement of data caption and conversion in GIS and to develop a software toolkit for automated raster/vector conversion. The approach is based on computing the skeleton from Voronoi diagrams using natural neighbour interpolation. In this paper we present the algorithm for skeleton extraction from scanned maps. We show that the skeleton extracted from the map features can approximate the centreline of the map object. We apply this algorithm directly on the Voronoi cells, for the extraction of complex spatial features. This research can lead to the improvement of current practices in spatial data acquisition reducing significantly the cost and amount of work needed.
منابع مشابه
An Algorithm for Centreline Extraction Using Natural Neighbour Interpolation
Data caption and conversion are two of the most costly operations of any GIS, in terms of computer time and manual work needed for spatial data acquisition. They can represent up to 80 percent of the total implementation costs. Manual digitising is a very error prone and costly operation, especially due to the lack of explicit topology in commercial GIS systems. Indeed, each map update might re...
متن کاملModelling a Road Using Spline Interpolation
We study the use of cubic spline interpolation to represent the centerline of a road, for curves in both R2 and R3 . We look at algorithms to create a representation based on arc length and evenly spaced nodes along the centerline. We also consider methods for moving between rectangular coordinates and coordinates based on distance along the centerline and the offset from that centerline (in R2...
متن کاملRoad Extraction from Lidar Data Using Support Vector Machine Classification
This paper presents a method for road extraction from lidar data based on SVM classification. The lidar data are used exclusively to evaluate the potential in the road extraction process. First, the SVM algorithm is used to classify the lidar data into five classes: road, tree, building, grassland, and cement. Then, some misclassified pixels in the road class is removed using the road values in...
متن کاملNatural neighbour Galerkin methods
Natural neighbour co-ordinates (Sibson co-ordinates) is a well-known interpolation scheme for multivariate data tting and smoothing. The numerical implementation of natural neighbour co-ordinates in a Galerkin method is known as the natural element method (NEM). In the natural element method, natural neighbour co-ordinates are used to construct the trial and test functions. Recent studies on NE...
متن کاملNatural Gas Price Forecasting using Kriging Interpolation Technique and Neldar-Mead Optimization Algorithm
The prediction of economic series with high volatility and high uncertainty - such as natural gas prices - is always a challenge in econometric models, because the use of traditional linear modeling models does not allow us to predict complex and nonlinear time series. Regarding the prediction of natural gas prices, findings point to superiority of the neural network compared to regression mod...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017